
KZG Extractability based on ROM
KZG10 and other polynomial commitment proofs are often used to construct SNARKs, typically by compiling
polynomial oracles in an Interactive Oracle Proof using PCS.

Considering security, the Knowledge Soundness of the IOP itself is easy to guarantee. However, for the
SNARK obtained after compiling the IOP with PCS, proving its Knowledge Soundness property is not as
straightforward.

Compared to the IOP model where the prover sends an oracle containing an entire polynomial (in the IOP
model, the length of the oracle is the same as the polynomial, but the verifier doesn't read it entirely), in
SNARK, the prover only sends commitments to the polynomials, which contain very little information: just
the values of the polynomial at a few points.

Therefore, we can only guarantee the Knowledge Soundness of SNARK if we ensure that the polynomial
commitment itself is "extractable". (For a detailed argument, refer to Interactive Oracle Proofs by Eli Ben-
Sasson et al.)

Unfortunately, Kate et al. did not prove that the KZG10 protocol has extractability. Therefore, to use KZG10
in constructing SNARKs, we must reprove its security.

A series of previous works, including Sonic [MBK+19], Plonk [GWC19], Marlin [CHM+19], proposed schemes
to prove that the KZG10 scheme satisfies extractability based on non-falsifiable assumptions (Knowledge
Assumptions) or based on idealized group models (Idealized Group Model) such as GGM, AGM. It can be
said that most SNARK systems constructed based on the KZG scheme currently indirectly rely on the
idealized group model.

At the same time, SNARK systems use the Fiat-Shamir transform to achieve non-interactive proofs, which
means they also rely on another strong idealized model, namely the Random Oracle Model (ROM). This
situation puts us in a rather bad position: our SNARK systems would have the flaws of both models! In
recent years, some papers have attacked them separately.

Compared to the idealized group model, the ROM model assumption is weaker (which means stronger
security). If we can prove the security of the KZG scheme under the ROM model, we can remove the SNARK
system's dependence on the idealized group model, thus increasing our confidence in its security.

In this context, Lipmaa, Parisella, and Siim published their work "Constant-Size zk-SNARKs in ROM from
Falsifiable Assumptions" (hereinafter referred to as [LPS24]) this year, making a significant step towards our
goal. Their contributions include:

1. Proving the special soundness property of the KZG scheme under the ROM model based on a newly
proposed falsifiable assumption

2. Further proving that the KZG scheme satisfies black-box extractability, for use in compiling IOPs

3. Making partial progress in proving the knowledge soundness property of Plonk under the ROM model

In this article, we will focus on introducing the work of the first point.

Special Soundness

To introduce special soundness, we first need to understand interactive proofs and their security
definitions.

Interactive Proofs and Knowledge Soundness

【Definition 1: Public-coin Interactive Proofs】

An interactive protocol between two parties (prover and verifier) for proving a target relation is called an
Interactive Proof, denoted as , where are the prover and verifier algorithms respectively.
Specifically,

Prover input: public statement (denoted as), secret witness (denoted as)

Verifier input: public statement (denoted as)

The prover and verifier interact through a series of exchanges, and the collection of all interaction
messages is called a transcript

The verifier outputs 1 for acceptance, 0 for rejection.

If all random numbers used by the verifier during the interaction are public, we call such an interactive
protocol a Public-coin Interactive Proof. Additionally, if the prover sends messages and the verifier sends

 messages during the entire interaction, we call it a -step protocol.

As is well known, to ensure that an interactive proof is secure, it needs to satisfy two security properties:

Completeness: For any honest prover executing the protocol, and if there exists such that
satisfies relation , then can cause the verifier to output acceptance by executing the protocol.

Soundness: For any potentially malicious prover, and if there does not exist such that
satisfies relation , then cannot cause the verifier to output acceptance by executing the protocol.

The above two security properties ensure the basic security of interactive proofs, but the definition of
Soundness can only ensure that a certain statement indeed belongs to relation , and cannot meet the
security requirements of some application scenarios. For example, in an identity authentication system, we
require the prover to prove their identity: that is, they "possess" a private key corresponding to the
public key satisfying . If the proof only ensures the Soundness property, then the verifier
only knows the conclusion that " belongs to the cyclic group constituted by the generator ". But this
conclusion cannot guarantee that the prover actually possesses the private key . In fact, we can prove

 without knowing , for example, using Fermat's Little Theorem.

Therefore, we need a stronger security definition, namely "Knowledge Soundness"

【Definition 2: Knowledge Soundness】

For an interactive proof , if there exists a polynomial-time algorithm that can forge a proof
to make the verifier accept with a non-negligible probability without knowing the corresponding to ,
then there must exist a polynomial-time extractor algorithm , which uses as a rewindable Oracle, can
extract a satisfying with a non-negligible probability . We call the soundness error, and if the
size of this error is negligible, then satisfies the Knowledge Soundness property.

【Note】If a Public-coin Interactive Proof satisfies Completeness and Soundness for any adversary, we call it
a Proof of Knowledge. If Soundness is only satisfied for polynomial-time adversaries, we call it an Argument
of Knowledge.

It can be seen that the key to the definition of Knowledge Soundness lies in emphasizing the feasibility of
constructing an extractor algorithm. That is to say, if a malicious prover claims that it is feasible to forge a
legal proof without knowing , then constructing an extractor for based on this malicious prover is
equally feasible, which contradicts the claim of the malicious prover. This ensures that any prover who can
output a legal proof must "possess" the secret value .

Proof of Knowledge Soundness (Taking Schnorr Protocol as an
Example)

We have already given a relatively specific definition of Knowledge Soundness. So how do we prove that an
interactive proof protocol satisfies this property? Obviously, the most direct answer is to construct an
extractor, but how to construct an extractor is a deep subject (plainly speaking, LPS24 is doing this). To
facilitate explaining the work of LPS24, let's start with a relatively simple example to explain the proof idea
of knowledge soundness.

As shown in the figure below, the Schnorr protocol [Sch90] is a 3-step interactive proof conducted between
the prover and the verifier. By executing this protocol, the prover can prove to the verifier that she
possesses a secret value satisfying the discrete logarithm relation

Their interaction process is as follows

The prover generates a random value , calculates and sends it to the verifier

The verifier generates a random value as a challenge and sends it to the prover

The prover calculates the public value and sends it to the verifier

Finally, the verifier checks based on the messages received in the protocol. For
convenience, we denote the transcript of the Schnorr protocol as .

It's easy to prove that the Schnorr protocol satisfies the Completeness property, which we won't elaborate
on here.

Next, we focus on the Knowledge Soundness property:

According to Definition 2, we first give the conclusion: If there exists a polynomial-time algorithm that
can forge a legal Schnorr proof, then there must exist a polynomial-time extractor algorithm that can
extract the satisfying secret value by rewinding .

So how to construct an to complete the proof? It might be difficult to write out the algorithm directly, so
let's break down this work into the following steps:

First, we construct a sub-algorithm , given two transcripts about as input, denoted as
, requiring to be the same and to be different. This sub-algorithm

should be able to output satisfying

Then, we construct another sub-algorithm , calls as an Oracle, first obtains a legal
transcript , then rewinds to the second step of the Schnorr protocol, tries to send a
challenge value different from to with the same , until outputs another legal transcript

Finally, the algorithm first runs to obtain two transcripts that meet the conditions, and then
runs to obtain

【Implementing sub-algorithm 】

The implementation of sub-algorithm often appears in the security proofs of various papers. Simply
put, can obtain the public values from the two input transcripts. Assuming honestly
calculated these two values, they should satisfy the following form:

By solving the equation, we can calculate as a possible secret value, and we only

need to check to know if it's legal. If they are equal, directly outputs the legal secret value
, and the algorithm completes. If they are not equal, can use the obtained result to construct a

reduction to break the discrete logarithm assumption:

Since the probability of breaking the discrete logarithm assumption is negligible, we can conclude that the
difference between the success probability of and the success probability of is also negligible.

【Obtaining transcripts】

We have implemented the first step, now let's look at the second step, which requires algorithm to call
 to obtain two legal transcripts. It should be noted that Definition 2 assumes that can only

successfully output legal proofs with probability each time, which means that cannot always succeed.
Moreover, the running time of is assumed to be within polynomial time, which also limits that
cannot call indefinitely, because considering the feasibility of the algorithm, the total running time of

 also needs to be within polynomial time.

Therefore, to successfully complete the second step, we must prove the following two points

1. is a polynomial-time algorithm

2. also successfully outputs with a non-negligible probability

From Knowledge Soundness to Special Soundness

The paper [Cra96] gives a quite elegant proof of the properties of the algorithm. Since the process is
quite long and similar to the content of [LPS24] that will be introduced later, we won't describe it here. In
any case, the above process is summarized as a lemma:

【Rewinding Lemma】

For a 3-step interactive proof , if there exists a polynomial-time algorithm that can forge a
legal transcript with a non-negligible probability, then there must exist a polynomial-time extractor
algorithm that can obtain another legal transcript (satisfying the same and different) by rewinding

, and the success probability of is also non-negligible.

The Rewinding Lemma is not limited to the Schnorr protocol. In fact, for any 3-step Sigma protocol, the
extractor algorithm can rewind to obtain additional (polynomial number) legal transcripts.

Therefore, the Rewinding Lemma actually simplifies the process of proving Knowledge Soundness for
researchers designing specific protocols. For protocols designed based on the Sigma model, we usually only
need to give the construction of sub-algorithm in the security proof. To formally describe this process,
cryptographers proposed a new definition, namely Special Soundness

Definition 3: Special Soundness

For a 3-step interactive proof , if there exists a polynomial-time extraction algorithm , given
its input as and two legal transcripts, denoted as , can output the secret value ,
then we say satisfies Special Soundness.

【Note】The above definition is also called 2-special soundness. If the input of extraction algorithm
includes transcripts, it is called -special soundness

With the development of interactive proofs, researchers are not limited to constructing only 3-step
protocols. To meet this demand, Special Soundness has been further extended to -step interactive
proofs. That is, for the round, the extractor algorithm needs to obtain additional
transcripts by rewinding . Finally, the input of sub-algorithm is no longer a simple transcript vector,
but a transcript tree with height , denoted as transcript tree. Correspondingly, the property
satisfied by this protocol is called special soundness. For the specific definition of this part,
interested readers can read [BCC+16] and [ACK21]. The [LPS24] introduced in this article only uses -special
soundness.

LPS24: KZG10 with Special Soundness
We have already introduced the basic process of the KZG10 polynomial commitment scheme in our
previous articles. In [LPS24], the authors first write the KZG10 scheme in a form that conforms to interactive
proofs, where the prover has public input (i.e., parameters and

), secret input polynomial, and the verifier only has public input . The two parties conduct the
following interactive protocol:

The prover calculates the polynomial commitment and sends it to the verifier

The verifier chooses a random as the evaluation point and sends it to the prover

The prover calculates and sends the value , proof , where

The verifier checks based on the interaction data

Similarly, we call the collection of interaction messages between the two parties a transcript. If a transcript
 can pass verification, it is called accepting. Furthermore, if a vector containing transcripts

satisfies the following two requirements, it is admissible:

1. All transcripts in contain the same polynomial commitment

2. For any two transcripts , their evaluation points are different, i.e.,

In addition to defining the interactive form of the KZG10 scheme, the authors of [LPS24] also proposed a
new difficult problem assumption, named Adaptive Rational Strong Diffie-Hellman assumption, abbreviated
as ARSDH assumption, defined as follows

【 -ARSDH assumption】

If for any polynomial-time adversary algorithm , given parameters , SRS generated by
random value , , is required to output a pair , and a set of size ,
satisfying the following relation:

If the probability of succeeding is negligible, then the -ARSDH assumption is said to hold for the
bilinear group parameter generation algorithm .

ARSDH is a relaxation of a known assumption RSDH, where RSDH requires that cannot choose the set
by itself. In addition, [LPS24] also proves that -ARSDH can imply the -SDH assumption
(ARSDH implies SDH), that is, if SDH can be broken, then ARSDH can also be broken. Because SDH can imply
the evaluation binding property of KZG10, we get the following conclusion

The preparatory knowledge has been introduced. Next, following the proof idea of the Schnorr protocol
introduced earlier, we first give the construction of the extractor algorithm based on transcripts, that is,
proving that KZG satisfies special soundness, and then prove the rewinding lemma.

Special Soundness of KZG
First, let's give the definition:

For a polynomial commitment scheme , if there exists a polynomial-time extraction algorithm , given
its input as and a vector of length of transcripts, satisfying

1. Any is accepting (passes verification)

2. is admissible (is the same, is different)

 can output the secret value , satisfying , then we say
 satisfies -Special Soundness

Obviously, the idea of designing the algorithm is to try to extract a polynomial from , and
 is either a legal secret value or an instance that breaks the assumption.

Let's write out the verification relation corresponding to each :

Let , be the Lagrange polynomials interpolating the values on
the set , the expression of is

Now, multiply both sides of each verification equation by the value of the Lagrange polynomial at , for
example, the -th equation is

And add all equations, we can get

Let , the left side is

Let , the right side is

Finally, we get the equation

Based on this equation, the extraction algorithm first obtains from transcripts, and

calculates and . Compare , and perform the following

operations based on the result

If , directly outputs as the secret polynomial, and the algorithm completes.

If , uses to construct a reduction to break the assumption:

 calculates and outputs as an instance to break

Obviously, the above instance satisfies

Proof completed.

Rewinding Lemma
The above proof ensures that KZG10 satisfies -special soundness, but to further ensure knowledge
soundness, we also need to prove that it is feasible for to obtain satisfying transcripts by
rewinding, that is, the rewinding lemma.

Specifically, for the following algorithm, we need to prove that it can succeed with a non-negligible
probability in polynomial time

1. randomly selects and calls to obtain

2. Check the validity of , if valid, continue; if not valid, return to step 1 and select another

3. runs a loop algorithm, selecting a new in each round, and rewinds to obtain a new transcript,
with the termination condition being

1. obtains transcripts that meet the requirements (i.e., satisfying accepting and
admissible) → Algorithm succeeds

2. has traversed all possible , but still hasn't obtained transcripts that meet the
requirements → Algorithm fails

The [LPS24] paper adopts the same proof idea as [ACK21], letting be a Boolean matrix with row indices
as the set , where are the random numbers used by the

 algorithm, , and the adversary respectively. The column indices of are the challenge value
space . When generates a legal transcript for challenge value under a certain random number setting

, we set the corresponding element in to 1, i.e., .

Next, we analyze the success probability and running time of the algorithm respectively

【Probability Analysis】

Define events as follows:

Event A: passes verification

Event B: , passes verification

Then the probability of succeeding is calculated as the probability of , that is

【Note】: The truth table of is

T T T

T F F

F T T

F F T

Consider the probability , the event occurs if and only if outputs a legal under the
random parameter setting , and the row where is located has at least "1" elements.

Let be the number of rows in that contain "1" elements, for example, in the above figure.

The number of rows containing "1" elements can be calculated as , the probability

 is calculated as follows

And because

We can get the lower bound of

Finally, we get the lower bound of the success probability of

【Running Time Analysis】

For the algorithm, it can be considered that its running time is mainly related to the time of calling the
 algorithm. And because is a polynomial-time algorithm, we only need to calculate the number of

times calls the algorithm, denoted as , to deduce that the time complexity of algorithm is
.

Consider that successfully obtains a legal in step 2 (i.e., event occurs), continues to run the
loop in step 3. Since needs to call the algorithm once in each round of the loop, we can obtain by
calculating the expected number of loop iterations.

Let's first discuss the problem of calculating the number of loop iterations separately: Given a random
parameter , assuming the corresponding row vector in contains "1" elements, is the
length of the vector . On the premise of already selecting one "1" element in (i.e.,), solve for
the expected number of times selects "1" elements from the remaining items.

To calculate the expectation of , we need to introduce the concept of Negative HyperGeometric
distribution (NHG distribution)

NHG distribution: Given a blind box containing balls, of which balls are marked, it is required to take
out only one ball at a time, and not put it back, until marked balls are taken out. Let be the total
number of all balls taken out when the ball-taking ends, the expectation of is

.

Correspondingly, when the number of "1" elements contained in is greater than , conforms to the
NHG distribution. Assuming that each contains "1" elements, we can calculate the expectation of

 as follows:

 contains at least "1" elements, , where

 contains less than "1" elements, i.e., , algorithm will keep executing the loop
until traversing all elements in , obviously

The above considers the case when event occurs. Since for any , contains "1" elements, the
probability of event occurring is , calculate

For all , calculate the expectation of as follows

Proof completed.

References
[CHM+19] Chiesa, Alessandro, Yuncong Hu, Mary Maller, et al. "Marlin: Preprocessing zkSNARKs with
Universal and Updatable SRS." Cryptology ePrint Archive (2019). https://eprint.iacr.org/2019/1047

[MBK+19] Maller Mary, Sean Bowe, Markulf Kohlweiss, et al. "Sonic: Zero-Knowledge SNARKs from Linear-
Size Universal and Updatable Structured Reference Strings." Cryptology ePrint Archive (2019).
https://eprint.iacr.org/2019/099

[GWC19] Ariel Gabizon, Zachary J. Williamson, Oana Ciobotaru. "PLONK: Permutations over Lagrange-bases
for Oecumenical Noninteractive arguments of Knowledge." Cryptology ePrint Archive (2019).
https://eprint.iacr.org/2019/953

[LPS24] Helger Lipmaa, Roberto Parisella, Janno Siim. "Constant-Size zk-SNARKs in ROM from Falsifiable
Assumptions." Cryptology ePrint Archive (2024). https://eprint.iacr.org/2024/173

[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl "A Compressed Sigma-Protocol Theory for Lattices"
Cryptology ePrint Archive (2021). https://eprint.iacr.org/2021/307

[Sch90] Claus-Peter Schnorr. "Efficient identification and signatures for smart cards." In Gilles Brassard,
editor, CRYPTO'89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

[Cra96] Ronald Cramer. "Modular Design of Secure yet Practical Cryptographic Protocols". PhD thesis, CWI
and University of Amsterdam, 1996.

https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2024/173
https://eprint.iacr.org/2021/307

	KZG Extractability based on ROM
	Special Soundness
	Interactive Proofs and Knowledge Soundness
	Proof of Knowledge Soundness (Taking Schnorr Protocol as an Example)
	From Knowledge Soundness to Special Soundness

	LPS24: KZG10 with Special Soundness
	Special Soundness of KZG
	Rewinding Lemma
	References

