
KZG Extractability based on ROM  
KZG10 and other polynomial commitment proofs are often used to construct SNARKs, typically by compiling
polynomial oracles in an Interactive Oracle Proof using PCS.

Considering security, the Knowledge Soundness of the IOP itself is easy to guarantee. However, for the
SNARK obtained after compiling the IOP with PCS, proving its Knowledge Soundness property is not as
straightforward.

Compared to the IOP model where the prover sends an oracle containing an entire polynomial (in the IOP
model, the length of the oracle is the same as the polynomial, but the verifier doesn't read it entirely), in
SNARK, the prover only sends commitments to the polynomials, which contain very little information: just
the values of the polynomial at a few points.

Therefore, we can only guarantee the Knowledge Soundness of SNARK if we ensure that the polynomial
commitment itself is "extractable". (For a detailed argument, refer to Interactive Oracle Proofs by Eli Ben-
Sasson et al.)

Unfortunately, Kate et al. did not prove that the KZG10 protocol has extractability. Therefore, to use KZG10
in constructing SNARKs, we must reprove its security.

A series of previous works, including Sonic [MBK+19], Plonk [GWC19], Marlin [CHM+19], proposed schemes
to prove that the KZG10 scheme satisfies extractability based on non-falsifiable assumptions (Knowledge
Assumptions) or based on idealized group models (Idealized Group Model) such as GGM, AGM. It can be
said that most SNARK systems constructed based on the KZG scheme currently indirectly rely on the
idealized group model.

At the same time, SNARK systems use the Fiat-Shamir transform to achieve non-interactive proofs, which
means they also rely on another strong idealized model, namely the Random Oracle Model (ROM). This
situation puts us in a rather bad position: our SNARK systems would have the flaws of both models! In
recent years, some papers have attacked them separately.

Compared to the idealized group model, the ROM model assumption is weaker (which means stronger
security). If we can prove the security of the KZG scheme under the ROM model, we can remove the SNARK
system's dependence on the idealized group model, thus increasing our confidence in its security.

In this context, Lipmaa, Parisella, and Siim published their work "Constant-Size zk-SNARKs in ROM from
Falsifiable Assumptions" (hereinafter referred to as [LPS24]) this year, making a significant step towards our
goal. Their contributions include:

1. Proving the special soundness property of the KZG scheme under the ROM model based on a newly
proposed falsifiable assumption

2. Further proving that the KZG scheme satisfies black-box extractability, for use in compiling IOPs

3. Making partial progress in proving the knowledge soundness property of Plonk under the ROM model

In this article, we will focus on introducing the work of the first point.

Special Soundness  



To introduce special soundness, we first need to understand interactive proofs and their security
definitions.

Interactive Proofs and Knowledge Soundness  

【Definition 1: Public-coin Interactive Proofs】

An interactive protocol between two parties (prover and verifier) for proving a target relation  is called an
Interactive Proof, denoted as , where  are the prover and verifier algorithms respectively.
Specifically,

Prover input: public statement (denoted as ), secret witness (denoted as )

Verifier input: public statement (denoted as )

The prover and verifier interact through a series of exchanges, and the collection of all interaction
messages is called a transcript

The verifier outputs 1 for acceptance, 0 for rejection.

If all random numbers used by the verifier during the interaction are public, we call such an interactive
protocol a Public-coin Interactive Proof. Additionally, if the prover sends  messages and the verifier sends

 messages during the entire interaction, we call it a -step protocol.

As is well known, to ensure that an interactive proof is secure, it needs to satisfy two security properties:

Completeness: For any honest prover  executing the protocol, and if there exists  such that 
satisfies relation , then  can cause the verifier to output acceptance by executing the protocol.

Soundness: For any potentially malicious prover, and if there does not exist  such that 
satisfies relation , then  cannot cause the verifier to output acceptance by executing the protocol.

The above two security properties ensure the basic security of interactive proofs, but the definition of
Soundness can only ensure that a certain statement  indeed belongs to relation , and cannot meet the
security requirements of some application scenarios. For example, in an identity authentication system, we
require the prover to prove their identity: that is, they "possess" a private key  corresponding to the
public key  satisfying . If the proof only ensures the Soundness property, then the verifier
only knows the conclusion that "  belongs to the cyclic group  constituted by the generator ". But this
conclusion cannot guarantee that the prover actually possesses the private key . In fact, we can prove

 without knowing , for example, using Fermat's Little Theorem.

Therefore, we need a stronger security definition, namely "Knowledge Soundness"

【Definition 2: Knowledge Soundness】

For an interactive proof , if there exists a polynomial-time algorithm  that can forge a proof
to make the verifier accept with a non-negligible probability  without knowing the  corresponding to ,
then there must exist a polynomial-time extractor algorithm , which uses  as a rewindable Oracle, can
extract a  satisfying  with a non-negligible probability . We call  the soundness error, and if the
size of this error is negligible, then  satisfies the Knowledge Soundness property.

【Note】If a Public-coin Interactive Proof satisfies Completeness and Soundness for any adversary, we call it
a Proof of Knowledge. If Soundness is only satisfied for polynomial-time adversaries, we call it an Argument
of Knowledge.



It can be seen that the key to the definition of Knowledge Soundness lies in emphasizing the feasibility of
constructing an extractor algorithm. That is to say, if a malicious prover claims that it is feasible to forge a
legal proof without knowing , then constructing an extractor for  based on this malicious prover is
equally feasible, which contradicts the claim of the malicious prover. This ensures that any prover who can
output a legal proof must "possess" the secret value .

Proof of Knowledge Soundness (Taking Schnorr Protocol as an
Example)

 

We have already given a relatively specific definition of Knowledge Soundness. So how do we prove that an
interactive proof protocol satisfies this property? Obviously, the most direct answer is to construct an
extractor, but how to construct an extractor is a deep subject (plainly speaking, LPS24 is doing this). To
facilitate explaining the work of LPS24, let's start with a relatively simple example to explain the proof idea
of knowledge soundness.

As shown in the figure below, the Schnorr protocol [Sch90] is a 3-step interactive proof conducted between
the prover and the verifier. By executing this protocol, the prover can prove to the verifier that she
possesses a secret value  satisfying the discrete logarithm relation 

Their interaction process is as follows

The prover generates a random value , calculates  and sends it to the verifier

The verifier generates a random value  as a challenge and sends it to the prover

The prover calculates the public value  and sends it to the verifier

Finally, the verifier checks  based on the messages received in the protocol. For
convenience, we denote the transcript of the Schnorr protocol as .

It's easy to prove that the Schnorr protocol satisfies the Completeness property, which we won't elaborate
on here.

Next, we focus on the Knowledge Soundness property:



According to Definition 2, we first give the conclusion: If there exists a polynomial-time algorithm  that
can forge a legal Schnorr proof, then there must exist a polynomial-time extractor algorithm  that can
extract the satisfying secret value  by rewinding .

So how to construct an  to complete the proof? It might be difficult to write out the algorithm directly, so
let's break down this work into the following steps:

First, we construct a sub-algorithm , given two transcripts about  as input, denoted as
, requiring  to be the same and  to be different. This sub-algorithm

should be able to output  satisfying 

Then, we construct another sub-algorithm ,  calls  as an Oracle, first obtains a legal
transcript , then  rewinds  to the second step of the Schnorr protocol, tries to send a
challenge value different from  to  with the same , until  outputs another legal transcript

Finally, the  algorithm first runs  to obtain two transcripts that meet the conditions, and then
runs  to obtain 

【Implementing sub-algorithm 】

The implementation of sub-algorithm  often appears in the security proofs of various papers. Simply
put,  can obtain the public values  from the two input transcripts. Assuming  honestly
calculated these two values, they should satisfy the following form:

 

By solving the equation, we can calculate  as a possible secret value, and we only

need to check  to know if it's legal. If they are equal,  directly outputs the legal secret value
, and the algorithm completes. If they are not equal,  can use the obtained result to construct a

reduction to break the discrete logarithm assumption:

 

Since the probability of breaking the discrete logarithm assumption is negligible, we can conclude that the
difference between the success probability of  and the success probability of  is also negligible.

【Obtaining transcripts】

We have implemented the first step, now let's look at the second step, which requires algorithm  to call
 to obtain two legal transcripts. It should be noted that Definition 2 assumes that  can only

successfully output legal proofs with probability  each time, which means that  cannot always succeed.
Moreover, the running time of  is assumed to be within polynomial time, which also limits that 
cannot call  indefinitely, because considering the feasibility of the algorithm, the total running time of

 also needs to be within polynomial time.

Therefore, to successfully complete the second step, we must prove the following two points

1.  is a polynomial-time algorithm

2.  also successfully outputs  with a non-negligible probability



From Knowledge Soundness to Special Soundness  

The paper [Cra96] gives a quite elegant proof of the properties of the  algorithm. Since the process is
quite long and similar to the content of [LPS24] that will be introduced later, we won't describe it here. In
any case, the above process is summarized as a lemma:

【Rewinding Lemma】

For a 3-step interactive proof , if there exists a polynomial-time algorithm  that can forge a
legal transcript with a non-negligible probability, then there must exist a polynomial-time extractor
algorithm  that can obtain another legal transcript (satisfying the same  and different ) by rewinding

, and the success probability of  is also non-negligible.

The Rewinding Lemma is not limited to the Schnorr protocol. In fact, for any 3-step Sigma protocol, the
extractor algorithm  can rewind to obtain additional  (polynomial number) legal transcripts.

Therefore, the Rewinding Lemma actually simplifies the process of proving Knowledge Soundness for
researchers designing specific protocols. For protocols designed based on the Sigma model, we usually only
need to give the construction of sub-algorithm  in the security proof. To formally describe this process,
cryptographers proposed a new definition, namely Special Soundness

Definition 3: Special Soundness

For a 3-step interactive proof , if there exists a polynomial-time extraction algorithm , given
its input as  and two legal transcripts, denoted as , can output the secret value ,
then we say  satisfies Special Soundness.

【Note】The above definition is also called 2-special soundness. If the input of extraction algorithm 
includes  transcripts, it is called -special soundness

With the development of interactive proofs, researchers are not limited to constructing only 3-step
protocols. To meet this demand, Special Soundness has been further extended to -step interactive
proofs. That is, for the  round, the extractor algorithm  needs to obtain additional 
transcripts by rewinding . Finally, the input of sub-algorithm  is no longer a simple transcript vector,
but a transcript tree with height , denoted as transcript tree. Correspondingly, the property
satisfied by this protocol is called special soundness. For the specific definition of this part,
interested readers can read [BCC+16] and [ACK21]. The [LPS24] introduced in this article only uses -special
soundness.

LPS24: KZG10 with Special Soundness  
We have already introduced the basic process of the KZG10 polynomial commitment scheme in our
previous articles. In [LPS24], the authors first write the KZG10 scheme in a form that conforms to interactive
proofs, where the prover has public input  (i.e., parameters  and

), secret input  polynomial, and the verifier only has public input . The two parties conduct the
following interactive protocol:

The prover calculates the polynomial commitment  and sends it to the verifier

The verifier chooses a random  as the evaluation point and sends it to the prover



The prover calculates and sends the value , proof , where

The verifier checks  based on the interaction data

Similarly, we call the collection of interaction messages between the two parties a transcript. If a transcript
 can pass verification, it is called accepting. Furthermore, if a vector  containing  transcripts

satisfies the following two requirements, it is admissible:

1. All transcripts in  contain the same polynomial commitment 

2. For any two transcripts , their evaluation points are different, i.e., 

In addition to defining the interactive form of the KZG10 scheme, the authors of [LPS24] also proposed a
new difficult problem assumption, named Adaptive Rational Strong Diffie-Hellman assumption, abbreviated
as ARSDH assumption, defined as follows

【 -ARSDH assumption】

If for any polynomial-time adversary algorithm , given parameters , SRS generated by
random value , ,  is required to output a pair , and a set  of size ,
satisfying the following relation:

 

If the probability of  succeeding is negligible, then the -ARSDH assumption is said to hold for the
bilinear group parameter generation algorithm .

ARSDH is a relaxation of a known assumption RSDH, where RSDH requires that  cannot choose the set 
by itself. In addition, [LPS24] also proves that -ARSDH can imply the -SDH assumption
(ARSDH implies SDH), that is, if SDH can be broken, then ARSDH can also be broken. Because SDH can imply
the evaluation binding property of KZG10, we get the following conclusion

 

The preparatory knowledge has been introduced. Next, following the proof idea of the Schnorr protocol
introduced earlier, we first give the construction of the extractor algorithm  based on transcripts, that is,
proving that KZG satisfies special soundness, and then prove the rewinding lemma.

Special Soundness of KZG  
First, let's give the definition:

For a polynomial commitment scheme , if there exists a polynomial-time extraction algorithm , given
its input as  and a vector  of length  of transcripts, satisfying

1. Any  is accepting (passes verification)

2.  is admissible (  is the same,  is different)

 can output the secret value , satisfying , then we say
 satisfies -Special Soundness



Obviously, the idea of designing the  algorithm is to try to extract a polynomial  from , and
 is either a legal secret value or an instance that breaks the  assumption.

Let's write out the verification relation corresponding to each :

 

Let ,  be the Lagrange polynomials interpolating the values  on
the set , the expression of  is

 

Now, multiply both sides of each verification equation by the value of the Lagrange polynomial at , for
example, the -th equation is

 

And add all  equations, we can get

 

Let , the left side is

 

Let , the right side is

 

Finally, we get the equation

 

Based on this equation, the extraction algorithm  first obtains  from  transcripts, and

calculates  and . Compare , and perform the following

operations based on the result

If ,  directly outputs  as the secret polynomial, and the algorithm completes.



If ,  uses  to construct a reduction to break the  assumption:

 calculates  and outputs  as an instance to break

Obviously, the above instance satisfies

 

Proof completed.

Rewinding Lemma  
The above proof ensures that KZG10 satisfies -special soundness, but to further ensure knowledge
soundness, we also need to prove that it is feasible for  to obtain  satisfying transcripts by
rewinding, that is, the rewinding lemma.

Specifically, for the following  algorithm, we need to prove that it can succeed with a non-negligible
probability in polynomial time

1.  randomly selects  and calls  to obtain 

2. Check the validity of , if valid, continue; if not valid, return to step 1 and select another 

3.  runs a loop algorithm, selecting a new  in each round, and rewinds  to obtain a new transcript,
with the termination condition being

1.  obtains  transcripts that meet the requirements (i.e., satisfying accepting and
admissible) → Algorithm succeeds

2.  has traversed all possible , but still hasn't obtained  transcripts that meet the
requirements → Algorithm fails

The [LPS24] paper adopts the same proof idea as [ACK21], letting  be a Boolean matrix with row indices
as the set , where  are the random numbers used by the

 algorithm, , and the adversary respectively. The column indices of  are the challenge value
space . When  generates a legal transcript for challenge value  under a certain random number setting

, we set the corresponding element in  to 1, i.e., .

Next, we analyze the success probability and running time of the  algorithm respectively

【Probability Analysis】

Define events as follows:

Event A:  passes verification

Event B: ,  passes verification

Then the probability of  succeeding is calculated as the probability of , that is

 

【Note】: The truth table of  is



T T T

T F F

F T T

F F T

Consider the probability , the event  occurs if and only if  outputs a legal  under the
random parameter setting , and the row  where  is located has at least  "1" elements.

Let  be the number of rows in  that contain  "1" elements, for example,  in the above figure.

The number of rows containing  "1" elements can be calculated as , the probability

 is calculated as follows

 



And because 

We can get the lower bound of 

 

Finally, we get the lower bound of the success probability of 

 

【Running Time Analysis】

For the  algorithm, it can be considered that its running time is mainly related to the time of calling the
 algorithm. And because  is a polynomial-time algorithm, we only need to calculate the number of

times  calls the  algorithm, denoted as , to deduce that the time complexity of  algorithm is
.

Consider that  successfully obtains a legal  in step 2 (i.e., event  occurs),  continues to run the
loop in step 3. Since  needs to call the  algorithm once in each round of the loop, we can obtain  by
calculating the expected number of loop iterations.

Let's first discuss the problem of calculating the number of loop iterations separately: Given a random
parameter , assuming the corresponding row vector  in  contains  "1" elements,  is the
length of the vector . On the premise of already selecting one "1" element in  (i.e., ), solve for
the expected number of times  selects  "1" elements from the remaining  items.

To calculate the expectation of , we need to introduce the concept of Negative HyperGeometric
distribution (NHG distribution)

NHG distribution: Given a blind box containing  balls, of which  balls are marked, it is required to take
out only one ball at a time, and not put it back, until  marked balls are taken out. Let  be the total
number of all balls taken out when the ball-taking ends, the expectation of  is

.

Correspondingly, when the number of "1" elements contained in  is greater than ,  conforms to the
NHG distribution. Assuming that each  contains  "1" elements, we can calculate the expectation of

 as follows:

 contains at least  "1" elements, , where

 contains less than  "1" elements, i.e., , algorithm  will keep executing the loop
until traversing all elements in , obviously 

The above considers the case when event  occurs. Since for any ,  contains  "1" elements, the
probability of event  occurring is , calculate

 



For all , calculate the expectation of  as follows

 

Proof completed.
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